83 research outputs found

    The origin of large molecules in primordial autocatalytic reaction networks

    Get PDF
    Large molecules such as proteins and nucleic acids are crucial for life, yet their primordial origin remains a major puzzle. The production of large molecules, as we know it today, requires good catalysts, and the only good catalysts we know that can accomplish this task consist of large molecules. Thus the origin of large molecules is a chicken and egg problem in chemistry. Here we present a mechanism, based on autocatalytic sets (ACSs), that is a possible solution to this problem. We discuss a mathematical model describing the population dynamics of molecules in a stylized but prebiotically plausible chemistry. Large molecules can be produced in this chemistry by the coalescing of smaller ones, with the smallest molecules, the `food set', being buffered. Some of the reactions can be catalyzed by molecules within the chemistry with varying catalytic strengths. Normally the concentrations of large molecules in such a scenario are very small, diminishing exponentially with their size. ACSs, if present in the catalytic network, can focus the resources of the system into a sparse set of molecules. ACSs can produce a bistability in the population dynamics and, in particular, steady states wherein the ACS molecules dominate the population. However to reach these steady states from initial conditions that contain only the food set typically requires very large catalytic strengths, growing exponentially with the size of the catalyst molecule. We present a solution to this problem by studying `nested ACSs', a structure in which a small ACS is connected to a larger one and reinforces it. We show that when the network contains a cascade of nested ACSs with the catalytic strengths of molecules increasing gradually with their size (e.g., as a power law), a sparse subset of molecules including some very large molecules can come to dominate the system.Comment: 49 pages, 17 figures including supporting informatio

    Predictive factors for skeletal complications in hormone-refractory prostate cancer patients with metastatic bone disease

    Get PDF
    Factors predictive of skeletal-related events (SREs) in bone metastatic prostate cancer patients with hormone-refractory disease were investigated. We evaluated the frequency of SREs in 200 hormone-refractory patients consecutively observed at our Institution and followed until death or the last follow-up. Baseline parameters were evaluated in univariate and multivariate analysis as potential predictive factors of SREs. Skeletal-related events were observed in 86 patients (43.0%), 10 of which (5.0%) occurred before the onset of hormone-refractory disease. In univariate analysis, patient performance status (P=0.002), disease extent (DE) in bone (P=0.0001), bone pain (P=0.0001), serum alkaline phosphatase (P=0.0001) and urinary N-telopeptide of type one collagen (P=0.0001) directly correlated with a greater risk to develop SREs, whereas Gleason score at diagnosis, serum PSA, Hb, serum albumin, serum calcium, types of bone lesions and duration of androgen deprivation therapy did not. Both DE in bone (hazard ratio (HR): 1.16, 95% confidence interval (CI): 1.07–1.25, P=0.000) and pain score (HR: 1.13, 95% CI: 1.06–1.20, P=0.000) were independent variables predicting for the onset of SREs in multivariate analysis. In patients with heavy tumour load in bone and great bone pain, the percentage of SREs was almost twice as high as (26 vs 52%, P<0.02) and occurred significantly earlier (P=0.000) than SREs in patients with limited DE in bone and low pain. Bone pain and DE in bone independently predict the occurrence of SREs in bone metastatic prostate cancer patients with hormone-refractory disease. These findings could help physicians in tailoring the skeletal follow-up most appropriate to individual patients and may prove useful for stratifying patients enrolled in bisphosphonate clinical trials

    A Hidden Feedback in Signaling Cascades Is Revealed

    Get PDF
    Cycles involving covalent modification of proteins are key components of the intracellular signaling machinery. Each cycle is comprised of two interconvertable forms of a particular protein. A classic signaling pathway is structured by a chain or cascade of basic cycle units in such a way that the activated protein in one cycle promotes the activation of the next protein in the chain, and so on. Starting from a mechanistic kinetic description and using a careful perturbation analysis, we have derived, to our knowledge for the first time, a consistent approximation of the chain with one variable per cycle. The model we derive is distinct from the one that has been in use in the literature for several years, which is a phenomenological extension of the Goldbeter-Koshland biochemical switch. Even though much has been done regarding the mathematical modeling of these systems, our contribution fills a gap between existing models and, in doing so, we have unveiled critical new properties of this type of signaling cascades. A key feature of our new model is that a negative feedback emerges naturally, exerted between each cycle and its predecessor. Due to this negative feedback, the system displays damped temporal oscillations under constant stimulation and, most important, propagates perturbations both forwards and backwards. This last attribute challenges the widespread notion of unidirectionality in signaling cascades. Concrete examples of applications to MAPK cascades are discussed. All these properties are shared by the complete mechanistic description and our simplified model, but not by previously derived phenomenological models of signaling cascades

    A systematic review of the diagnostic accuracy of physical examination for the detection of cirrhosis

    Get PDF
    BACKGROUND: We conducted a review of the diagnostic accuracy of clinical examination for the diagnosis of cirrhosis. The objectives were: to identify studies assessing the accuracy of clinical examination in the detection of cirrhosis; to summarize the diagnostic accuracy of reported physical examination findings; and to define the effects of study characteristics on estimates of diagnostic accuracy. METHODS: Studies were identified through electronic literature search of MEDLINE (1966 to 2000), search of bibliographic references, and contact with authors. Studies that evaluated indicants from physical examination of patients with known or suspected liver disease undergoing liver biopsy were included. Qualitative data on study characteristics were extracted. Two-by-two tables of presence or absence of physical findings for patients with and without cirrhosis were created from study data. Data for physical findings reported in each study were combined using Summary Receiver Operating Characteristic (SROC) curves or random effects modeling, as appropriate. RESULTS: Twelve studies met inclusion criteria, including a total of 1895 patients, ranging in age from 3 to 90 years. Most studies were conducted in referral populations with elevated aminotransferase levels. Ten physical signs were reported in three or more studies and ten signs in only a single study. Signs for which there was more study data were associated with high specificity (range 75–98%), but low sensitivity (range 15–68%) for histologically-proven cirrhosis. CONCLUSIONS: Physical findings are generally of low sensitivity for the diagnosis of cirrhosis, and signs with higher specificity represent decompensated disease. Most studies have been undertaken in highly selected populations

    Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome

    Full text link

    Cardiac lymphatics in health and disease

    Get PDF
    The lymphatic vasculature, which accompanies the blood vasculature in most organs, is indispensable in the maintenance of tissue fluid homeostasis, immune cell trafficking, and nutritional lipid uptake and transport, as well as in reverse cholesterol transport. In this Review, we discuss the physiological role of the lymphatic system in the heart in the maintenance of cardiac health and describe alterations in lymphatic structure and function that occur in cardiovascular pathology, including atherosclerosis and myocardial infarction. We also briefly discuss the role that immune cells might have in the regulation of lymphatic growth (lymphangiogenesis) and function. Finally, we provide examples of how the cardiac lymphatics can be targeted therapeutically to restore lymphatic drainage in the heart to limit myocardial oedema and chronic inflammation.Peer reviewe
    corecore